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Abstract In this paper, a nonlinear saturation con-
troller is improved by using quadratic velocity coupling
term with time delay instead of the original quadratic
position coupling term in the controller and adding a
negative time-delay velocity feedback to the primary
system. The improved controller is utilized to con-
trol the high-amplitude vibration of a flexible, geo-
metrically nonlinear beam-like structure when the pri-
mary resonance and the 1:2 internal resonance occur
simultaneously. To explain analytically mechanism of
the saturation controlled system, an integral iterative
method is presented to obtain the second-order approx-
imations and the amplitude equations. It is shown that
the quadratic velocity coupling term can enlarge the
effective frequency bandwidth and enhance the per-
formance of the vibration suppression by comparison
with the quadratic position coupling term, and the linear
velocity feedback can suppress the transient vibrations.
The effects of different control parameters on saturation
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control are investigated. We found that time delays can
be used as control parameters to change the effective
frequency bandwidth and avoid the controller overload
risk. The analyses show that numerical simulations are
in good agreement with the analytical solutions.
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1 Introduction

If a system has quadratic nonlinearities, the saturation
phenomenon occurs when its natural frequencies are in
the ratio 1:2. The saturation control method based on
the internal resonance and the saturation phenomenon
is a novel one for vibration control. The applications
of the saturation control method have attracted consid-
erable attention in the past two decades, especially for
the linear main system [1–7]. Recently, there have been
more and more studies and applications of this method
for the nonlinear main system. Li et al. [8] employed a
saturation-based active absorber to suppress the high-
amplitude vibration of a nonlinear plant subjected to
principal external excitation. They found that the sat-
uration control would have a wide suppression fre-
quency bandwidth once the frequency of the absorber
was appropriately tuned. El-Badawy, El-Deen [9] and
Li et al. [10] applied a active nonlinear saturation-
based controller to suppress the free vibration of a self-
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excited plant. They demonstrated that the response of
the plant could be independent of its parameters when
the frequency of the absorber exactly equaled to half
of the natural frequency of the plant. In [11], the satu-
ration phenomenon and internal resonance is applied
to suppress the steady-state and transient vibrations
of helicopter rotor blade flapping. It is demonstrated
that the saturation control is efficient in suppressing the
steady-state vibrations. Warminski with his co-authors
[12] used a nonlinear saturation controller to control
the vibrations of a nonlinear beam subjected to self-
and externally excitations. They found that the sys-
temmight lose stabilities when the two type excitations
interacted near the fundamental resonance zone. InRef.
[13], a nonlinear saturation controller was applied to
control the undesired vibrations of a nonlinear mag-
netic levitation. They concluded that the natural fre-
quency of the controller should be kept equal to one
half of the excitation frequency in the control process.

The saturation controlmethod is effective and robust
near the resonance zone. However, the effective fre-
quency bandwidth of the controller is too narrow and
the transient vibrations are too long under the saturation
control. To solve this problem, Pai and his coauthors
[6] used quadratic velocity coupling term instead of
quadratic position coupling term in the controller and
added a negative velocity self-feedback to improve the
original saturation controller.

Time delay can be used as an important control para-
meter. For example, it can change the range of the satu-
ration control in [7] and can induces symmetry restora-
tion in an asymmetric bistable system in [14]. Zhao
and Xu [15] used the delayed feedback control and
saturation control to suppress the vibration of a two
degree-of-freedom dynamic vibration absorber system
with a parametrically excited pendulum. In Ref. [16],
Saeed and his co-authors concluded that time delay
could avoid the saturation controller overload and gen-
erate chaotic motions.

In recent years, the vibration control of flexible beam
systems has received much attentions [17–19]. In this
paper, an improved saturation control method is used to
control the transient and first mode steady-state vibra-
tions of a flexible, geometrically nonlinear beam.Based
on the saturation controller in [6], we improve the orig-
inal saturation controller in [20] by using quadratic
velocity coupling term with time delay instead of the
original quadratic position coupling term in the con-
troller and adding a negative time-delay velocity feed-

back to the primary system. We divide three cases to
investigate the performance of the improved saturation
controller, i.e., (1) keep the natural frequency of the
saturation controller equal to one half of the natural
frequency of the primary system (σ2 = 0); (2) keep
the natural frequency of the saturation controller equal
to one half of the excitation frequency(σ1 + σ2 = 0);
(3) keep the excitation frequency equal to the natural
frequency of the primary system(σ1 = 0). Effects of
different control parameters on saturation control are
studied for the above three cases. Finally, numerical
simulations are presented to validate the analytical pre-
dictions.

2 Mathematical modeling

The governing equations describing the first mode
vibrations of a nonlinear composite beam in Refs.
[8,12,16,20,21] together with the saturation controller
are in the following form

ü + 2μ1ω1u̇ + ω2
1u + α1u

3 − β(uu̇2 + u2ü)

= f cos(Ωt) + f1 + f2,

v̈ + 2μ2ω2v̇ + ω2
2v = f3.

(1)

where u denotes the response of the primary system,
v denotes the response of the saturation controller, ω1

is the natural frequency of the primary system, μ1 is
the damping ratio of the primary system, α1 is the cur-
vature nonlinearity coefficient, β denotes the inertia
nonlinearity coefficient, μ2 is the damping ratio of the
controller, ω2 is the natural frequency of the controller,
f andΩ represent the forcing amplitude and frequency,
respectively. There are two different feedback control
strategies we consider in the following:

Feedback (1): f1 = 0, f2 = γ v2, f3 = αuv, it is
the original saturation controller in [20].
Feedback (2): f1 = −2λω1u̇(t − τ1), f2 =
γ v2(t − τ2), f3 = αu̇(t − τ3)v̇(t − τ3). We use
αu̇(t − τ3)v̇(t − τ3) instead of αuv and add a nega-
tive velocity feedback −2λω1u̇(t − τ1) to increase
the system damping, where τ1, τ2, τ3 are time
delays.

3 The integral iterative method

Vibrations of various kinds with time delay can be
described by delay differential equations in the follow-
ing form
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ẍi + λi xi = φi (xi , ẋi , xiτ , ẋiτ , x j , ẋ j , x jτ , ẋ jτ ; εpi , t)

= φi [t, τ ], i, j = 1, 2, · · · (2)

where xiτ = xi (t − τ) and εpi is a parameter.

Theorem 1 Every periodic solution of the differential
equation (2) is a solution of the integro-differential
equation(see [22–24])

xi (t) =
∫ 2π

0
Gi [t, σ ]φi [σ, τ ] dσ

+ δ
n2i
λi

(ri cos ni t + si sin ni t), (3)

and time delay terms can be transformed into

xi (t − τ) =
∫ 2π

0
Gi [t − τ, σ ]φi [σ, τ ] dσ

+ δ
n2i
λi

(ri cos ni (t − τ) + si sin ni (t − τ)),

(4)

where Gi [t, σ ] = 1
π

(
1
2λi

+ ∑∞
j=1

cos j (t−σ)

ϑλi− j2

)
, Gi [t −

τ, σ ] = 1
π

(
1
2λi

+ ∑∞
j=1

cos jτ cos j (t−σ)+sin jτ sin j (t−σ)

ϑλi− j2

)
are the corresponding generalized Green’s functions,
where

δ
n2i
λi

=
{
1 λi = n2i , ni being an integer,

0 otherwise,

is the Kronecker symbol, and ϑ = ϑ
n2i
λi

= 1 − δ
n2i
λi
.

If λi = n2i (ni being an integer for the resonance
case), the parameters ri , si can be determined by the
periodicity equations (see [22–24])

ri = 1

π

∫ 2π

0
xi (t) cos ni t dt,

si = 1

π

∫ 2π

0
xi (t) sin ni t dt, (5)

which are equivalent to
∫ 2π

0
φi [t, τ ] cos ni t dt =

∫ 2π

0
φi [t, τ ] sin ni t dt = 0.

(6)

The solutions of (3) and (4) can be obtained by suc-
cessive approximations of xik(t), xik(t − τ), k =
1, 2, 3, . . . , which are given by

xik(t) =
∫ 2π

0
Gi [t, σ ]φi,k−1[σ, τ ] dσ

+ δ
n2i
λi

(ri cos(ni t) + si sin(ni t)), (7)

xik(t − τ) =
∫ 2π

0
Gi [t − τ, σ ]φi,k−1[σ, τ ] dσ

+ δ
n2i
λi

(ri cos ni (t − τ)

+ si sin ni (t − τ)), (8)

where

φi0[t, τ ] =
{
0, λi = n2i
φ[0, 0, 0, 0, 0, 0, 0, 0; εpi , t] λi �= n2i

φik[t, τ ] = φi [xik(t), ẋik(t), xik(t − τ), ẋik(t − τ),

x jk(t), ẋ jk(t), x jk(t − τ), ẋ jk(t − τ); εpi , t]
k = 1, 2, 3, · · · (9)

The integral equation method was introduced by G.
Schmidt [22]. In our previous works [23,24], we uti-
lized this method to deal with delay differential equa-
tions and demonstrated that the accuracy was remark-
able. However, the expressions of this method is not
rigorous when dealing with delay differential equa-
tions. In this section, we improve the integral equation
method by adding the Eq. (4) and rewriting the succes-
sive program. Now, we rename this improved method
as the integral iterative method because of more itera-
tive processes.

4 Amplitude equations

From the previously publishedworks [1–13,15,16,20],
it is concluded that the saturation phenomenon occurs
when the primary resonance and the 1:2 internal reso-
nance occur simultaneously. To analyze the saturation
control, two detuning parameters σ1, σ2 are introduced
as follows

Ω = ω1 + σ1, ω1 = 2ω2 + σ2. (10)

We introduce a dimensionless time again by

t1 = 1

2
Ωt, τ1 = 1

2
Ωτ, (11)

Here, for simplicity, we still replace t1, τ1 by t, τ .
For the Feedback (2) controlled system, the Eq. (1)

can be transformed into the following form:

ü + 4u = 4

Ω2

[
(2Ωσ1 − σ 2

1 )u − μ1ω1Ω u̇ − α1u
3

+ 1

4
Ω2β(uu̇2 + u2ü) + f cos(2t)

+ γ v2(t − τ2) − λω1Ω u̇(t − τ1)
]
,
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v̈ + v = 4

Ω2

[(
1

2
Ω(σ1 + σ2) − 1

4
(σ1 + σ2)

2
)

v

+ 1

4
Ω2αu̇(t − τ3)v̇(t − τ3) − μ2ω2Ωv̇

]
.

(12)

For theEq. (12), the corresponding generalizedGreen’s
functions are

λ1 = 4,

G1[t, σ ] = 1

π

[
1

8
+ 1

3
cos(t − σ)

− 1

4
cos(2(t − σ)) +

∞∑
j=3

cos( j (t − σ))

4 − j2

⎤
⎦ , (13)

G1[t − τ, σ ] = 1

π

[
1

8
+ 1

3
cos(t − τ − σ)

− 1

4
cos 2(t − τ − σ) +

∞∑
j=3

cos j (t − τ − σ)

4 − j2

⎤
⎦ ,

(14)

λ2 = 1,

G2[t, σ ] = 1

π

⎡
⎣1

2
− cos(t − σ) +

∞∑
j=2

cos j (t − σ)

1 − j2

⎤
⎦ ,

(15)

G2[t − τ, σ ] = 1

π

[
1

2
− cos(t − τ − σ)

+
∞∑
j=2

cos j (t − τ − σ)

1 − j2

⎤
⎦ . (16)

From Eqs. (7) and (8), we have the first approximation
in the following form

u1(t) = r1 cos(2t) + s1 sin(2t), (17)

v1(t) = r2 cos t + s2 sin t, (18)

u1(t − τi ) = r1 cos(2t − 2τi ) + s1 sin(2t − 2τi ),

(19)

v1(t − τi ) = r2 cos(t − τi ) + s2 sin(t − τi ), (20)

i = 1, 2, 3, . . . .
Substituting Eqs. (17)–(20) into Eqs. (7) and (8), we
obtain the second approximations in the form

u2(t) =
∫ 2π

0

1

π

⎡
⎣1

8
+ 1

3
cos(t − σ) − 1

4
cos 2(t − σ)

+
∞∑
j=3

cos j (t − σ)

4 − j2

⎤
⎦ 4

Ω2 [(2Ωσ1 − σ 2
1 )u1(σ )

−μ1ω1Ω u̇1(σ ) − α1u
3
1(σ ) + 1

4
Ω2β(u1(σ )u̇21(σ )

+ u21(σ )ü1(σ )) + f cos(2σ) + γ v21(σ − τ2)

− λω1Ω u̇1(σ − τ1)] dσ + r1 cos(2t) + s1 sin(2t)

= r22γ

2Ω2 + s22γ

2Ω2 +
(
r31β

16
− 3

16
r1s

2
1β + r31α1

32Ω2

− 3r1s21α1

32Ω2

)
cos(6t) +

(
3

16
r21 s1β − s31β

16
+ 3r21 s1α1

32Ω2

− s31α1

32Ω2

)
sin(6t) +

(
r1 + r31β

2
+ 1

2
r1s

2
1β − f

Ω2

+ 3r31α1

4Ω2 + 3r1s21α1

4Ω2 + r1σ 2
1

Ω2 − 2r1σ1
Ω

+ 2s1μ1ω1

Ω

+ 2s1λω1 cos(2τ1)

Ω
− r22γ cos(2τ2)

2Ω2 + s22γ cos(2τ2)

2Ω2

+ 2r1λω1 sin(2τ1)

Ω
+ r2s2γ sin(2τ2)

Ω2

)
cos(2t)

+
(
s1 + 1

2
r21 s1β + s31β

2
+ 3r21 s1α1

4Ω2 + 3s31α1

4Ω2 + s1σ 2
1

Ω2

− 2s1σ1
Ω

− 2r1μ1ω1

Ω
− 2r1λω1 cos(2τ1)

Ω

− r2s2γ cos(2τ2)

2Ω2 + 2s1λω1 sin(2τ1)

Ω
− r22γ sin(2τ2)

2Ω2

+ s22γ sin(2τ2)

2Ω2

)
sin(2t), (21)

v2(t) =
∫ π

0

1

2π

⎡
⎣1

2
− cos(t − σ) +

∞∑
j=2

cos j (t − σ)

1 − j2

⎤
⎦

4

Ω2

[(
1

2
Ω(σ1 + σ2) − 1

4
(σ1 + σ2)

2
)

v1(σ )

− μ2ω2Ωv̇1(σ ) + 1

4
Ω2αu̇1(σ − τ3)v̇1(σ − τ3)

]
dσ

+ r2 cos t + s2 sin t

= cos t

(
r2 + r2σ 2

1

Ω2 + 2r2σ1σ2
Ω2 − 2r2σ2

Ω
+ 4s2μ2ω2

Ω

− r1r2α cos τ3 + r2σ 2
2

Ω2 − 2r2σ1
Ω

− s1s2α cos τ3

+ r2s1α sin τ3 − r1s2α sin τ3) + sin t

(
s2 + s2σ 2

1

Ω2

+ 2s2σ1σ2
Ω2 + s2σ 2

2

Ω2 − 2s2σ1
Ω

− 2s2σ2
Ω

− 4r2μ2ω2

Ω

− r2s1α cos τ3 + r1s2α cos τ3 − r1r2α sin τ3

− s1s2α sin τ3) + cos(3t)

(
1

8
r1r2α cos(3τ3)

−,
1

8
s1s2α cos(3τ3) − 1

8
r2s1α sin(3τ3)

− 1

8
r1s2α sin(3τ3)

)
+ sin(3t)

(
1

8
r2s1α cos(3τ3)
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+ 1

8
r1s2α cos(3τ3) + 1

8
r1r2α sin(3τ3)

− 1

8
s1s2α sin(3τ3)

)
. (22)

Substituting Eqs. (21) and (22) into the solvability con-
ditions (5) yields

r31β

2
+ 1

2
r1s

2
1β − f

Ω2 + 3r31α1

4Ω2 + 3r1s
2
1α1

4Ω2 + r1σ
2
1

Ω2

− 2r1σ1
Ω

+ 2s1μ1ω1

Ω
+ 2s1λω1 cos(Ωτ1)

Ω

− r22γ cos(Ωτ2)

2Ω2 + s22γ cos(Ωτ2)

2Ω2 + 2r1λω1 sin(Ωτ1)

Ω

+ r2s2γ sin(Ωτ2)

Ω2 = 0, (23)

s31β

2
+ 1

2
s1r

2
1β + 3s31α1

4Ω2 + 3s1r
2
1α1

4Ω2 + s1σ
2
1

Ω2 − 2s1σ1
Ω

− 2r1λω1 cos(Ωτ1)

Ω
− r22γ sin(Ωτ2)

2Ω2 − 2r1μ1ω1

Ω

+ s22γ sin(Ωτ2)

2Ω2 + 2s1λω1 sin(Ωτ1)

Ω

− r2s2γ cos(Ωτ2)

Ω2 = 0, (24)

r2σ
2
1

Ω2 + 2r2σ1σ2
Ω2 + r2σ

2
2

Ω2 − 2r2σ1
Ω

− 2r2σ2
Ω

+ 4s2μ2ω2

Ω
− r1r2α cos

(
Ωτ3

2

)
− s1s2α cos

(
Ωτ3

2

)

+ r2s1α sin

(
Ωτ3

2

)
− r1s2α sin

(
Ωτ3

2

)
= 0, (25)

s2σ
2
1

Ω2 + 2s1σ1σ2
Ω2 + s2σ

2
2

Ω2 − 2s2σ1
Ω

− 2s2σ2
Ω

− 4r2μ2ω2

Ω
− r1r2α sin

(
Ωτ3

2

)
− s1s2α sin

(
Ωτ3

2

)

− r2s1α cos

(
Ωτ3

2

)
+ r1s2α cos

(
Ωτ3

2

)
= 0. (26)

For convenience to analyze the dynamics of the origi-
nal equation (1), we denote the amplitude of the pri-

mary system A1 =
√
r21 + s21 and the amplitude of the

controller A2 =
√
r22 + s22 . To simplify the above four

amplitude equations (23)–(26), we transform them into
the form of the Cartesian coordinates given by

(8A1μ1Ωω1 + 8A1λΩω1 cos(Ωτ1)) sin θ1 + (3A31α1

+ 4A1σ
2
1 − 8A1σ1Ω + 8A1λΩω1 sin(Ωτ1)

+ 2A31βΩ2) cos θ1 − 4 f

− 2A22γ cos(2θ2 + Ωτ2) = 0, (27)

(−8A1μ1Ωω1 − 8A1λΩω1 cos(Ωτ1)) cos θ1 + (3A31α

+ 4A1σ
2
1 − 8A1σ1Ω + 8A1λΩω1 sin(Ωτ1)

+ 2A31βΩ2) sin θ1 − 2A22γ sin(2θ2 + Ωτ2) = 0, (28)

(A2σ
2
1 + 2A2σ1σ2 + A2σ

2
2 − 2A2σ1Ω

− 2A2σ2Ω) cos θ2 − A1A2αΩ2 cos

(
θ1 − θ2 + 1

2
Ωτ3

)

+ 4A2μ2Ωω2 sin θ2 = 0, (29)

(A2σ
2
1 + 2A2σ1σ2 + A2σ

2
2 − 2A2σ1Ω

− 2A2σ2Ω) sin θ2 − A1A2αΩ2 sin

(
θ1 − θ2 + Ωτ3

2

)

− 4A2μ2Ωω2 cos θ2 = 0. (30)

where r1 = A1 cos θ1, s1 = A1 sin θ1, r2 =
A2 cos θ2, s2 = A2 sin θ2. To simplify Eqs. (27)–
(30), we make some simple calculations in the follow-
ing:
Eq. (27)× cos θ1+ Eq. (28)× sin θ1 is

4 f cos θ1 + 2A2
2γ cos(θ1 − 2θ2 − Ωτ2) = A1(4σ

2
1

− 8Ωσ1 + A2
1(3α1 + 2βΩ2)

+ 8λΩω1 sin(Ωτ1)) = 0. (31)

Eq. (27)× sin θ1−Eq. (28)× cos θ1 is

8A1Ωω1(μ1 + λ cos(Ωτ1)) = 4 f sin θ1

+ 2A2
2γ sin(θ1 − 2θ2 − Ωτ2). (32)

Eq. (29)× sin θ2−Eq. (30)× cos θ2 is

A2Ω(4μ2ω2 + A1αΩ sin(θ1 − 2θ2 + Ωτ3

2
)) = 0.

(33)

Eq. (29) × cos θ2+ Eq. (30) × sin θ2 is

A2 ((σ1 + σ2)(σ1 + σ2 − 2Ω)

−A1αΩ2 cos

(
θ1 − 2θ2 + Ωτ3

2

))
= 0.

(34)

Solving Eq. (31)–(34) and eliminating cos θ1, sin θ1,

cos(θ1 −2θ2), sin(θ1 −2θ2) by means of the relations
cos θ21 +sin θ21 = 1, cos(θ1−2θ2)2+sin(θ1−2θ2)2 =
1 yield the amplitude equations for two possible cases.

Case 1 The controller does not activate, i.e., A1 �=
0, A2 = 0, we have the amplitude equation on A1

from (31) and (32)

16 f 2 = A2
1(64Ω

2ω2
1(μ1 + λ cos(Ωτ1))

2

+ (4σ1(σ1 − 2Ω) + A2
1(3α1 + 2βΩ2)

+ 8λΩω1 sin(Ωτ1))
2). (35)
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Case 2 The controller activates, i.e., A1 �= 0, A2 �= 0,
then we have the amplitude equations from (31)–(34)
in the following form

(σ1 + σ2)
2(σ1 + σ2 − 2Ω)2

+ 16μ2
2Ω

2ω2
2 = A2

1α
2Ω4, (36)

16 f 2A21α
2Ω4

=
[
A21αΩ2(4σ1(σ1 − 2Ω) + A21(3α1 + 2βΩ2)

+ 8λΩω1 sin(Ωτ1)) − 4μ2Ωω2 sin

(
1

2
(2τ2 + τ3)Ω

)

− 2A22γ

(
(σ1 + σ2)(σ1 + σ2 − 2Ω) cos

(
1

2
(2τ2 + τ3)Ω

))]2

+
[
8A21αΩ3ω1(μ1 + λ cos(Ωτ1))

+ 2A22γ

(
4μ2Ωω2 cos

(
1

2
(2τ2 + τ3)Ω

)

+ (σ1 + σ2)(σ1 + σ2 − 2Ω) sin

(
1

2
(2τ2 + τ3)Ω

))]2
.

(37)

For the Feedback (1) controlled system, the ampli-
tude equations can be obtained in the above similar
process.

Case 1 The controller does not activate, i.e., A1 �=
0, A2 = 0

(8A1μ1Ωω1)
2 + [4A1σ

2
1 + A3

1(3α1 + 2βΩ2)

− 8A1σ1Ω]2 = 16 f 2.
(38)

Case 2 The controller activates, i.e., A1 �= 0, A2 �= 0

(σ1 + σ2)
2(σ1 + σ2 − 2Ω)2

+ 16μ2
2Ω

2ω2
2 = 4A2

1α
2, (39)

16[2A2
1αμ1Ωω1 + A2

2γμ2Ωω2]2
+[3A4

1αα1 + 4A2
1ασ 2

1 − A2
2γ σ 2

1 − 2A2
2γ σ1σ2

− A2
2γ σ 2

2 − 8A2
1ασ1 + 2A2

2γΩ(σ1 + σ2)Ω

+ 2A4
1αβΩ2]2 = 16A2

1 f
2α2. (40)

5 Stability of periodic solutions

To study the stability of the periodic solutions ofEq. (1),
we first perturb the periodic solution u = u2(t) =
(r22+s22 )γ

2Ω2 + r1 cos 2t + s1 sin 2t, v = v2(t) = r2 cos t +
s2 sin t (omit the higher order terms in Eqs. (21) and
(22) because of the weak nonlinearities) by introducing
disturbance terms z1(t), z2(t). Replacing u2(t), v2(t)

byu2(t)+z1(t), v2(t)+z2(t) inEq. (12) and linearizing
in z1(t), z2(t), we obtain

z̈1 + 4z1 = 4

Ω2

[(
2Ωσ1 − σ 2

1

)
z1 − μ1ω1Ω ż1 − 3α1u

2
2z1

+ 1

4
Ω2β(u̇2z1 + 2u2u̇2 ż1 + 2u2ü2z1 + u22 z̈1)

+ 2γ v2(t − τ2)z2(t − τ2) − λω1Ω ż1(t − τ1)
]
,

(41)

z̈2 + z2 = 4

Ω2

[(
1

2
Ω(σ1 + σ2) − 1

4
(σ1 + σ2)

2
)
z2

−μ2ω2Ω ż2 + 1

4
Ω2αv̇2(t − τ3)ż1(t − τ3)

+ 1

4
Ω2αu̇2(t − τ3)ż2(t − τ3)

]
.

For convenience to investigate the stability of the
periodic solutions, the nonlinear terms in Eq. (41) are
written as

φ1(t) = u22(t)

= a0 + a1 cos 2t + a2 sin 2t + a3 cos 4t

+ a4 sin 4t;
φ2(t) = u̇22(t)

= b0 + b1 cos 4t + b2 sin 4t;
φ3(t) = u2(t)ü2(t)

= c0 + c1 cos 2t + c2 sin 2t + c3 cos 4t

+ c4 sin 4t;
φ4(t) = u2(t)u̇2(t)

= d1 cos(2t) + d2 sin(2t) + d3 cos(4t)

+ d4 sin(4t);

where

a0 = r21
2

+ s21
2

+ r42γ 2

4Ω4 + r22 s
2
2γ

2

2Ω4 + s42γ
2

4Ω2 ,

a1 = r1r22γ

Ω2 + r1s22γ

Ω2 , a2 = r22 s1γ

Ω2 + s1s22γ

Ω2 ,

a3 = r21
2

− s21
2

, a4 = r1s1, b0 = 2r21 + 2s21 ,

b1 = −2r21 + 2s21 , b2 = −4r1s1,

c0 = −2r21 − 2s21 , c1 = −2r1r22γ

Ω2 − 2r1s22γ

Ω2 ,

c2 = −2r22 s1γ

Ω2 − 2s1s22γ

Ω2 , c3 = −2r21 + 2s21 ,

c4 = −4r1s1, d1 = r22 s1γ

Ω2 + s1s22γ

Ω2 ,
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d2 = −r1r22γ

Ω2 − r1s22γ

Ω2 ,

d3 = 2r1s1, d4 = −r21 + s21 .

Eq. (41) change into

z̈1 + 4z1 = 4

Ω2

[
(2Ωσ1 − σ 2

1 )z1 − μ1ω1Ω ż1

− 3α1φ1(t)z1 + 1

4
Ω2β(φ2(t)z1 + 2φ4(t)ż1

+ 2φ3(t)z1 + φ1(t)z̈1) + 2γ v2(t − τ2)

× z2(t − τ2) − λω1Ω ż1(t − τ1)

]
,

z̈2 + z2 = 4

Ω2

[(
1

2
Ω(σ1 + σ2) − 1

4
(σ1 + σ2)

2
)
z2

+ 1

4
Ω2αv̇2(t − τ3)ż1(t − τ3) − μ2ω2Ω ż2

+ 1

4
Ω2αu̇2(t − τ3)ż2(t − τ3)

]
.

(42)

Corresponding to the Floquet theory, the solution of
Eq. (42) can be written as

zi (t) = exp(ρt)Zi (t), i = 1, 2. (43)

The above Eqs. (42) change into

Z̈1 + 4Z1 =
(
b0β + 2c0β − ρ2 + a0βρ2 − 12a0α1

Ω2

− 4σ 2
1

Ω2 + 8σ1
Ω

− 4μ1ρω1

Ω
+ 1

Ω2 (2β(c1 + d1ρ)Ω2

+ a1(βρ2Ω2 − 12α1)

)
cos(2t) + 1

Ω2 (β(b1

+ 2(c3 + d3ρ))Ω2 + a3(βρ2Ω2 − 12α1)) cos(4t)

+ 1

Ω2

(
2β(c2 + d2ρ)Ω2 + a2(βρ2Ω2 − 12α1)

)
sin(2t)

+ 1

Ω2 (β(b2 + 2(c4 + d4ρ))Ω2 + a4(βρ2Ω2

− 12α1)) sin(4t)) Z1(t) − 4 exp(−ρτ1)λρω1Z1(t − τ1)

Ω

+
(
8 exp(−ρτ2)r2γ cos(t − τ2)

Ω2

+ 8 exp(−ρτ2)s2γ sin(t − τ2)

Ω2

)
Z2(t − τ2) + (−2ρ

+ 2a0βρ − 4μ1ω1

Ω
+ 2β(d1 + a1ρ) cos(2t) + 2β(d3

+ a3ρ) cos(4t) + 2β(d2 + a2ρ) sin(2t) + 2β(d4

+ a4ρ) sin(4t))Ż1(t) + (a0β + a1β cos(2t)

+ a3β cos(4t) + a2β sin(2t) + a4β sin(4t))Z̈1(t)

− 4 exp(−ρτ1)λω1 Ż1(t − τ1)

Ω
, (44)

Z̈2 + Z2 = exp(−ρτ3)αρ(s2 cos(t − τ3)

− r2 sin(t − τ3))Z1(t − τ3) +
(

−ρ2 − (σ1 + σ2)
2

Ω2

+ 2(σ1 + σ2)

Ω
− 4μ2ρω2

Ω

)
Z2

+ 2 exp(−ρτ3)αρ(s1 cos(2(t − τ3))

− r1 sin(2(t − τ3)))Z2(t − τ3)

+α exp(−ρτ3)(s2 cos(t − τ3)

−r2 sin(t − τ3))Ż1(t − τ3)

−
(
2ρ + 4μ2ω2

Ω

)
Ż2

+ 2 exp(−ρτ3)α(s1 cos(2(t − τ3))

− r1 sin(2(t − τ3)))Ż2(t − τ3). (45)

The first order approximate solutions of Eqs. (44)
and (45) can be expressed as

Z1(t) = p0 + p1 cos t + p2 sin t

+ p3 cos 2t + p4 sin 2t,

Z2(t) = p5 + p6 cos t + p7 sin t.

(46)

Inserting (46) into (44), (45) and equating the coef-
ficients of same harmonic terms yield a set of linear
homogeneous algebraic equations governing the coef-
ficients p0, p1, p2, p3, p4, p5, p6, p7. Since the
eight coefficients are not all zero, the determinant of
the coefficients matrix, which is the so-called Hill’s
determinant, must be zero. Expanding this determinant
yields

ρ16 + f1

(
exp

(
−1

2
Ωρτ1

)
, exp

(
−1

2
Ωρτ2

)
,

exp

(
−1

2
Ωρτ3

))
ρ15

+ · · ·+ f15

(
exp

(
−1

2
Ωρτ1

)
, exp

(
−1

2
Ωρτ2

)
,

exp

(
−1

2
Ωρτ3

))
ρ

+ f16 = 0. (47)

Since Eq. (47) hasmany exponential type transcenden-
tal terms, numerical methods are resorted to solve this
equation. If the real parts of all characteristic exponents
are negative, the periodic solution is asymptotically sta-
ble. On the other hand, if the real part of at least one
characteristic exponent is positive, the periodic solu-
tion is unstable.
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6 Quadratic position feedback and quadratic
velocity feedback

In this section, the performance of the Feedback (1)
control and the Feedback (2) control are compared.
From the amplitude equations (36) and (39), we con-
clude that: if Feedback (1) is utilized, the amplitude of

the primary system is A1 = μ2ω
2
1|α| when σ1 = σ2 = 0; if

Feedback (2) is utilized, the amplitude of the primary
system is A1 = 2μ2|α| when σ1 = σ2 = 0. It follows

that: if ω2
1 > 2, the vibration reduction effect of Feed-

back (2) is better than that of Feedback (1), but not vice
versa.

In the following sections, the parameters are fixed at
μ1 = 0.01, α1 = 14.41, β = 0.93, γ = 0.01, μ2 =
0.0001, α = 0.7, f = 0.05, ω1 = 3.06, unless oth-
erwise specified.

Figure 1 shows the frequency–response curves of
the primary system and the controller when σ2 = 0.
It can be seen that the effective frequency bandwidth
of Feedback (2) is wider than that of Feedback (1) and
the frequency–response curve of Feedback (2) is lower
than that of Feedback (1) under the saturation control. It
means that the vibration reduction effect of Feedback
(2) is better than that of Feedback (1). However, the
controller has the high-amplitude response under the
Feedback (2) control when the excitation frequency is
far from the resonance point (i.e., σ1 = 0). It follows
that the overload risk of the controller under Feedback
(2) control is greater than that under Feedback (1) con-
trol. In the following, our efforts are focused on the
Feedback(2) controlled system.

7 Effects of the control parameters

In this section, we divide three cases, i.e., σ2 = 0;
σ1+σ2 = 0; σ1 = 0 to discuss the effects of the control

parameters α, γ ,μ2, λ, τ1, τ2, τ3 on the behavior of the
Feedback (2) controlled system.

(1) Effect of the feedback gain α

Figure 2a1, a2 and a3 illustrates that increasing α

can broaden the effective frequency bandwidth of the
saturation controller and enhance the vibration reduc-
tion effect of the primary system. FromFig. 2b1, b3, we
observe that the overload risk of the controller increases
as the feedback gain α increases. Figure 2b2 shows that
the saturation controller in the case σ1+σ2 = 0 has the
widest effective frequency bandwidth comparing with
the two cases σ2 = 0 and σ1 = 0.

(2) Effect of the feedback gain γ

From the amplitude equation (36), we observe that
the amplitude of the primary system is independent of
the feedback gain γ . Therefore, the variation of γ does
not affect the amplitude of the primary system. Figure 3
shows that increasing γ does not affect the effective
frequency bandwidth of the saturation controller, but
it can suppress the vibration of the controller. So, the
feedback gain γ can be used as an important parameter
to avoid the controller overload risk.

(3) Effect of the feedback gain λ

Figure 4b1, b3 shows that increasing λ can shrink
the effective frequencybandwidthof the saturation con-
troller for the two cases σ2 = 0 and σ1 = 0. Figure 4b2
shows that increasing λ has little effect on the effec-
tive frequency bandwidth of the saturation controller
for the case σ1+σ2. From Fig. 4 a1, a2, a3, we observe
that increasing λ can suppress the vibration of the pri-
mary system when the saturation controller does not
activate.

(4) Effect of the damping coefficient μ2

Figure 5 shows that the smaller controller damping
ratio, the wider effective frequency bandwidth of the

Fig. 1 Frequency–response
curves of the saturation
controlled system when
σ2 = 0, the solid line for
stable solutions and the
dashed line for unstable
solutions. a the primary
system; b the controller
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Fig. 2 Effect of varying α

on the frequency–response
curves: a1, b1 σ2 = 0; a2,
b2 σ1 + σ2 = 0; a3, b3
σ1 = 0
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Fig. 3 Effect of varying γ

on the frequency–response
curves: a σ2 = 0; b
σ1 + σ2 = 0; c σ1 = 0
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Fig. 4 Effect of varying λ

on the frequency–response
curves of the controller: a1,
b1 σ2 = 0; a2, b2
σ1 + σ2 = 0; a3, b3 σ1 = 0
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controller and the better vibration reduction effect of
the primary system. We also observe that the ampli-
tude of the controller increases as μ2 decreases. So,
the smaller the μ2, the bigger the overload risk of the
saturation controller.

(5) Effect of time delay τ2

From the amplitude equation (36), we observe that
the amplitude of the primary system is independent
of time delay τ2. Figure 6 shows the amplitude (A2)-
delay (τ2) response curves of the controller when σ1 =
σ2 = 0, λ = 0. It can be seen that the amplitude (A2)-
delay (τ2) response curve is stable in the delay interval
[0, 0.12] and [1.88, 2.23]. Away from this range, the
saturation controlled system becomes unstable. The
appearance of time delay τ2 can shrink the effective
frequency bandwidth and suppress the vibration of the
saturation controller as shown in Fig. 7a, c. So, time
delay τ2 can be used as an important parameter to avoid
the controller overload risk. Figure 7b shows that time
delay τ2 has little effect around σ1 = 0, and the sat-

uration controlled system may lose stability at some
values of time delay τ2 for the case σ1 + σ2. So, time
delay τ2 should be tuned to zero for this case.

(6) Effect of time delay τ3

The effect of time delay τ3 is similar to that of τ2.
From the amplitude equation (36), it can be observed
that the amplitude of the primary system is indepen-
dent of time delay τ3. Figure 8 shows that time delay
τ3 should be chosen in the interval [0,0.2]. For other
range of τ3, the saturation controlled system becomes
unstable. Although the appearance of time delay τ3 can
shrink the effective frequency bandwidth of the satura-
tion controller, it can suppress the vibration of the con-
troller as shown in Fig. 9a, c. So, the time delay τ3 can
also be used as an important parameter to avoid the con-
troller overload risk. However, for the case σ1+σ2 = 0,
the saturation controlled system loses stability near
σ1 = 0 and time delay τ3 has little effect as shown
in Fig. 9b. Therefore, it is important to tune time delay
τ3 to zero for this case.
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Fig. 5 Effect of varying μ2
on the frequency–response
curves: a1, b1 σ2 = 0; a2,
b2 σ1 + σ2 = 0; a3, b3
σ1 = 0
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Fig. 6 Amplitude A2-delay τ2 response curve when σ1 = σ2 =
0, τ1 = τ3 = 0

(7) Effect of time delay τ1

For σ1 = σ2 = 0, λ = 0.01, the amplitude
(A2)-delay (τ1) curve has three stable segments: [0,
0.7], [1.35, 2.8] and [3.4, 4.85] as shown in Fig. 10.
Away from these ranges, the saturation controlled sys-
tem lose stabilities. For the case σ2 = 0, proper choice
of time delay τ1 can broaden the effective frequency
bandwidth as shown in Fig. 11a1, b1. From Fig.11a3,
b3, we observe that the appearance of τ1 can shrink the

effective frequency bandwidth for the case σ1 = 0. Fig-
ure 11a2, b2 shows that time delay τ1 has little effect
on the case σ1 + σ2 = 0.

8 Numerical simulations

First, the approximate results obtained by the integral
iterative method are compared with numerical simu-
lations quantitatively. Figure 12 shows a comparison
of frequency–response curves obtained by the inte-
gral iterative method and numerical simulations when
σ2 = 0, λ = 0, τ1 = 0, τ2 = 0, τ3 = 0.
Figure 13 shows a comparison between the approx-
imate solutions and numerical solutions for force-
response curves when σ1 = 0, σ2 = 0, μ2 =
0.01, λ = 0.01, τ1 = 0.1, τ2 = 0.05, τ3 = 0.1. As
shown in these figures, the approximate solutions are
in good agreement with numerical simulations, which
indicates that the above analysis is valid.

Figure 14 shows time histories of the primary system
and the controller for three different cases, i.e., uncon-
trol, Feedback (1) control and Feedback (2) control.
From Fig. 14a, it is observed that the amplitude of the
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Fig. 7 Effect of varying τ2
on the frequency–response
curves of the controller: a
σ2 = 0; b σ1 + σ2 = 0; c
σ1 = 0
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Fig. 8 Amplitude A2-delay τ3 response curve when σ1 = σ2 =
0, τ1 = τ2 = 0

primary system under Feedback (2) control is almost
zero and smaller than that under Feedback (1) control.
Figure 14b shows that the amplitudes of the controller
under two different control is almost the same.

Figures 15 and 16 show time histories of the primary
system and the controller for γ = 0.01 and γ = 0.1,
respectively, where α = 1, σ1 = −0.28, σ2 = 0. It
can be seen that the controller steady-state amplitude is
about 10whenα = 1, γ = 0.01, σ = −0.28, σ2 = 0.
As γ increases to 0.1, the amplitude of the controller
decreases to about 3. These figures show that increasing

Fig. 9 Effect of varying τ3
on the frequency–response
curves of the controller: a
σ2 = 0; b σ1 + σ2 = 0; c
σ1 = 0 τ 3=0

τ 3=0.05
τ 3=0.1

τ 3=0.17

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

2

4

6

8

σ1

A
2 τ 3=0

τ 3=0.05
τ 3=0.1
τ 3=0.17

2 0 2 4 6 8 10 12
0

1

2

3

4

σ1

A
2

τ 3=0
τ 3=0.05
τ 3=0.1
τ 3=0.17

0.2 0.1 0.0 0.1
0
1
2
3
4
5
6
7

σ2

A
2

(a) (b)

(c)

123



www.manaraa.com

An improved time-delay saturation controller 1703
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Fig. 10 Amplitude A2-delay τ1 response curvewhenσ1 = σ2 =
0, τ2 = τ3 = 0

the feedback gain γ suppresses the steady-state vibra-
tion of the controller.

Figures 17 and 18 show time histories of the pri-
mary system and the controller for λ = 0 and λ = 0.05
respectively, where σ1 = σ2 = 0, τ1 = 0. Figures 19
and 20 show time histories of the primary system and
the controller for λ = 0 and λ = 0.1 respectively,
where σ1 = −0.5, σ2 = 0.5, τ1 = 0. To ensure that
the saturation controller activates, the initial conditions
are takes as u(0) = 0.5, v(0) = 4, u̇(0) = −1, v̇(0) =
1 in these figures. Comparing Figs. 17 and 18, we
observe that the transient times to reach the steady-state
vibrations decrease greatly because of proper choice of

Fig. 11 Effect of varying
τ1 on the
frequency–response curves:
a1, b1 σ2 = 0; a2, b2
σ1 + σ2 = 0; a3, b3 σ1 = 0
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Fig. 12 Comparison of
frequency–response curves
between numerical
solutions and approximate
solutions obtained by the
integral iterative method
when σ2 = 0, λ = 0, τ1 =
0, τ2 = 0, τ3 = 0, a the
primary system; b the
controller
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Fig. 13 Comparison of force-response curves between numerical solutions and analytical solutions obtained by the integral iterative
method when σ1 = 0, σ2 = 0, μ2 = 0.01, λ = 0.01, τ1 = 0.1, τ2 = 0.05, τ3 = 0.1, a the primary system; b the controller

Fig. 14 Time histories of the primary system and the controller when σ1 = σ2 = 0, λ = 0, 1800 ≤ t ≤ 1900, uncontrol;
1900 ≤ t ≤ 2000, Feedback (1) control; 2000 ≤ t ≤ 2100, Feedback (2) control

Fig. 15 Time histories of
the primary system and the
controller when
α = 1, γ = 0.01, σ1 =
−0.28, σ2 = 0, initial
condition:
u(0) = 0.5, v(0) =
8, u̇(0) = −1, v̇(0) = 1

Fig. 16 Time histories of
the primary system and the
controller when
α = 1, γ = 0.1, σ1 =
−0.28, σ2 = 0, initial
condition:
u(0) = 0.5, v(0) =
8, u̇(0) = −1, v̇(0) = 1

λ. The same phenomenon can be observed by compar-
ing Figs. 19 and 20. However, Figs. 17 and 19 show
that the transient times required increase as the detun-
ing values σ1, σ2 increase. Combining these figures, it
can be concluded that proper choice ofλ can effectively
suppress the transient vibrations.

9 Conclusion

To control the transient and steady-state vibrations of a
nonlinear composite beam, an improved time-delayed
saturation controller is proposed by using quadratic
time-delay velocity coupling term instead of the orig-
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Fig. 17 Time histories of
the primary system and the
controller when
λ = 0, σ1 = σ2 = 0 initial
condition:
u(0) = 0.5, v(0) =
4, u̇(0) = −1, v̇(0) = 1

Fig. 18 Time histories of
the primary system and the
controller when
λ = 0.05, σ1 = σ2 =
0, τ1 = 0, initial condition:
u(0) = 0.5, v(0) =
4, u̇(0) = −1, v̇(0) = 1

Fig. 19 Time histories of
the primary system and the
controller when
λ = 0, σ1 = −0.5, σ2 =
0.5, τ1 = 0, initial
condition:
u(0) = 0.5, v(0) =
4, u̇(0) = −1, v̇(0) = 1

Fig. 20 Time histories of
the primary system and the
controller when
λ = 0.1, σ1 = −0.5, σ2 =
0.5, τ1 = 0, initial
condition:
u(0) = 0.5, v(0) =
4, u̇(0) = −1, v̇(0) = 1

inal quadratic position coupling term in the controller
and adding a negative time-delay velocity feedback to
the primary system. A new analytical method named
the integral iterative method is utilized to derive the
second-order approximations and the amplitude equa-
tions when the primary resonance and 1:2 internal res-
onance occur simultaneously. Then, the stability of the
periodic solution is investigated using the Floquet the-
ory. From the above analysis, the main results are sum-
marized as follows.

(1) The analytical predictions based on the integral
iterativemethod is in good agreement with numer-

ical simulations both quantitatively and qualita-
tively.

(2) The quadratic velocity coupling term can enlarge
the effective frequency bandwidth and enhance
the performance of the vibration reduction by
comparison with the original quadratic position
coupling term. In addition, the linear velocity
feedback can effectively decreases the transient
times.

(3) The performance of the improved saturation con-
troller can be enhanced by properly adjusting the
control parameters α, γ , λ, μ2, τ1, τ2, τ3. Increas-
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ing α or decreasingμ2 can broaden the effective
frequency bandwidth of the saturation controller,
but increase its overload risk. However, increasing
γ and proper choices of τ1, τ2, τ3 can avoid the
occurrence of the controller overload.

(4) Proper choice of time delay τ1 can enlarge the
effective frequency bandwidth of the saturation
controller.

(5) Similar to the previous work [6], the saturation
controller should be designed for two different
cases. First, if the natural frequency of the pri-
mary system is easily changed and the excitation
has a single frequency, device should be designed
to trace the excitation frequency and keep the nat-
ural frequency of the controller equal to half of
the excitation frequency in the control process. In
this case, the saturation controller possess a wide
effective frequency bandwidth. Second, if the nat-
ural frequency of the primary system is not easily
changed, we should keep the natural frequency of
the controller equal to one half of the natural fre-
quency of the primary system.

10 Comparison with previously published work

In Ref.[20], Warminski selected four different con-
trollers including nonlinear saturation controller (NSC)
to suppress the nonlinear composite beamvibration and
found that the PPF and NSC controllers are most effec-
tive. Based on the model in [20], Saeed [16] et al stud-
ied the effects of time delays on the saturation control.
They found that time delays in the saturation controlled
system can change the controller’s frequency band-
width and can avoid the occurrence of the controller
overload. However, the coupling term in the controller
is of quadratic position. In other words, the system
in the previous two works [16,20] is under the Feed-
back (1) control. In [6], the authors proposed a refined
vibration absorber that applied to a linear beam model.
They found that the quadratic velocity coupling term
enables the saturation controller to suppress the vibra-
tion of the primary system to zero, but the quadratic
position coupling term cannot, and a negative velocity
feedback can suppress the transient vibrations. So, in
this paper we improved the NSC controllers in [16,20]
by using quadratic velocity coupling term in the con-
trollerwith time delay and adding a negative time-delay
velocity feedback to the primary system.We found that

the quadratic velocity coupling term can enlarge the
effective frequency bandwidth and enhance the perfor-
mance of the vibration by comparison with the original
quadratic velocity coupling term in [16,20].
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